基于机器学习的海底输油管道停输置换最大瞬态压力预测
DOI:
作者:
作者单位:

1.中海油信息科技有限公司北京分公司;2.大连科迈尔海洋科技有限公司;3.常州大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金,国家自然科学基金项目(面上项目,重点项目,重大项目)


The Prediction of Maximum Transient Pressure for Subsea Oil Pipeline Shutdown Displacement Based on Machine Learning
Author:
Affiliation:

1.China National Offshore Oil Information Technology Beijing Branch;2.Dalian Kingmile Marine Technology Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    西江油田海底管道在台风高发季节常会关闭平台,而其原油具有高凝点、高析蜡温度的特点,停输后因管道温度降低容易发生结蜡和凝管事故,严重威胁管道系统安全。采用瞬态模拟软件计算了置换流量、停输时间、管道末端出口压力、原油输送温度、环境温度及管道输量对最大置换瞬态压力的影响特性,结果表明置换流量对最大置换瞬态压力的影响最为显著。采用支持向量机(SVM- Support Vector Machine)、随机森林(RF- Random Forest)和BP神经网络(Backpropagation Neural Network)方法对瞬态软件计算结果进行训练,对比分析了MSE和R2评价指标,基于二次SVM的模型在预测精度及泛化能力方面表现最优,并开发了配套软件界面,可用于现场快速预测不同置换工况下的管道最大瞬态压力变化特性,合理优化操作参数,保证管道置换作业安全高效进行。

    Abstract:

    The Xijiang oil field subsea pipeline frequently shuts down the platform during the high typhoon season, and its crude oil has high pour point and high wax appearance temperature characteristics. After suspension of transport, due to the decrease in pipeline temperature, wax deposition and pipe clogging incidents are likely to occur, which seriously threaten the safety of the pipeline system. A transient simulation software was used to calculate the effects of displacement flow rate, suspension time, pipeline outlet pressure, crude oil transportation temperature, ambient temperature, and pipeline throughput on the maximum displacement transient pressure. The results indicated that the displacement flow rate has the most significant impact on the maximum displacement transient pressure. Support vector machine (SVM), random forest (RF), and BP neural network methods were used to train the results of the transient software simulation. A comparative analysis was conducted using MSE and R2 evaluation indicators. The model based on the quadratic SVM demonstrated the best performance in terms of prediction accuracy and generalization capability. Additionally, a supporting software interface was developed, which can be used for rapid prediction of the pipeline's maximum transient pressure variation characteristics under different displacement conditions, allowing for the reasonable optimization of operating parameters and ensuring the safe and efficient execution of pipeline displacement operations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-04-29
  • 录用日期:2025-05-06
  • 在线发布日期:
  • 出版日期: