基于深度学习的海上导管架平台损伤检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Damage Detection of Offshore Jacket Platform Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对导管架平台损伤检测过程中损伤敏感特征的提取问题,提出一种基于深度学习的损伤检测模型。为更好地贴合卷积神经网络(Convolutional Neural Network,CNN)的特点,该模型先将一维时域信号转化为二维灰度图,再通过CNN提取二维灰度图中存在的损伤特征并以此进行损伤检测。在导管架平台模型上进行试验,比较不同灰度图生成方式对检测结果的影响。损伤检测试验结果表明:该检测模型对损伤种类的识别准确率可达99.4%,具备良好的损伤检测能力;该检测模型对损伤程度的识别准确率为96.3%,可应用于导管架平台的损伤预警。

    Abstract:

    Aimed at the problem of extracting damage-sensitive features during the damage detection process of jacket platform, a damage detection model based on deep learning is proposed. In order to better fit the characteristics of the Convolutional Neural Network (CNN), this model first converts the one-dimensional time domain signal into a two-dimensional grayscale image; and then extracts the damage features existing in the two-dimensional grayscale image through the CNN which is used for damage detection. Through the tests on the jacket platform model, the effects of different grayscale image generation methods on the detection results are compared. The results of damage detection tests show that: the detection model can identify the damage types with an accuracy of 99.4%, and is of good damage detection capability; the detection model can identify the degree of damage with an accuracy of 96.3%, and it can be applied to damage early warning of jacket platforms.

    参考文献
    相似文献
    引证文献
引用本文

魏安凯,官晟,王娜,吕尚嵘.基于深度学习的海上导管架平台损伤检测[J].中国海洋平台,2025,(03):18-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-26
  • 出版日期: